login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.
4

%I #4 Aug 04 2019 19:10:43

%S 2,4,9,23,70,256,1160,6599,48017,452518,5574706,90198548,1919074899,

%T 53620291147,1962114118390,93718030190126,5822768063787557

%N Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.

%e Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:

%e {} {} {} {}

%e {{}} {{}} {{}} {{}}

%e {{1}} {{1}} {{1}}

%e {{}{1}} {{12}} {{12}}

%e {{}{1}} {{}{1}}

%e {{}{12}} {{123}}

%e {{2}{12}} {{}{12}}

%e {{}{2}{12}} {{}{123}}

%e {{}{1}{2}{12}} {{2}{12}}

%e {{3}{123}}

%e {{}{2}{12}}

%e {{23}{123}}

%e {{}{3}{123}}

%e {{}{23}{123}}

%e {{}{1}{2}{12}}

%e {{3}{23}{123}}

%e {{}{1}{23}{123}}

%e {{}{3}{23}{123}}

%e {{3}{13}{23}{123}}

%e {{}{2}{3}{23}{123}}

%e {{}{3}{13}{23}{123}}

%e {{}{2}{3}{13}{23}{123}}

%e {{}{1}{2}{3}{12}{13}{23}{123}}

%t Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

%Y The labeled version is A306445.

%Y Taking first differences and prepending 1 gives A326898.

%Y Taking second differences and prepending two 1's gives A001930.

%Y Cf. A000612, A000798, A003180, A108798, A108800, A193675, A326867, A326876, A326878, A326882, A326883.

%K nonn,more

%O 0,1

%A _Gus Wiseman_, Aug 03 2019