OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is weakly nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x <= z and t <= y or z <= x and y <= t.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
49: {{1,1},{1,1}}
91: {{1,1},{1,2}}
98: {{},{1,1},{1,1}}
133: {{1,1},{1,1,1}}
147: {{1},{1,1},{1,1}}
169: {{1,2},{1,2}}
182: {{},{1,1},{1,2}}
196: {{},{},{1,1},{1,1}}
203: {{1,1},{1,3}}
245: {{2},{1,1},{1,1}}
247: {{1,2},{1,1,1}}
259: {{1,1},{1,1,2}}
266: {{},{1,1},{1,1,1}}
273: {{1},{1,1},{1,2}}
294: {{},{1},{1,1},{1,1}}
299: {{1,2},{2,2}}
301: {{1,1},{1,4}}
338: {{},{1,2},{1,2}}
343: {{1,1},{1,1},{1,1}}
361: {{1,1,1},{1,1,1}}
MATHEMATICA
wknXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; (x<=z&&y>=t)||(x>=z&&y<=t)]
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[1000], wknXQ[primeMS/@primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 21 2019
STATUS
approved