login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259766
Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 or 00000101.
1
49, 87, 167, 299, 564, 1086, 2045, 3870, 7371, 14001, 26647, 50766, 96574, 183815, 350088, 666497, 1268925, 2416285, 4600654, 8759750, 16679685, 31759384, 60472021, 115144725, 219245665, 417461876, 794885812, 1513533557, 2881900030
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) - 2*a(n-5) + 2*a(n-6) - 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - 4*a(n-10) + 2*a(n-11) for n>12.
Empirical g.f.: x*(49 + 38*x + 31*x^2 - 4*x^3 - 87*x^4 - 20*x^5 - 162*x^6 - 67*x^7 + x^8 - 96*x^9 + 78*x^10 - 6*x^11) / (1 - x - x^2 - x^3 - 2*x^4 + 2*x^5 - 2*x^6 + 4*x^7 + 3*x^8 - 2*x^9 + 4*x^10 - 2*x^11). - Colin Barker, Dec 27 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0....0..0..1..0....0..0..0..1....0..1..0..0....0..0..0..1
..0..1..0..0....0..0..0..1....1..0..0..0....1..0..0..0....0..0..0..0
..1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..1
..0..0..0..0....1..0..0..0....1..0..0..1....0..0..0..1....0..0..0..0
..1..0..0..1....0..0..0..1....0..0..0..0....0..0..1..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..0
CROSSREFS
Column 2 of A259770.
Sequence in context: A250074 A247678 A093894 * A273937 A326257 A231275
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 04 2015
STATUS
approved