OFFSET
0,4
COMMENTS
A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.
EXAMPLE
The a(0) = 1 through a(7) = 6 maximal subsets:
{} {1} {1,2} {3} {3,4} {2,5} {1,6} {7}
{1,2} {1,2,4} {3,4} {2,5} {1,6}
{3,5} {3,4} {2,5}
{1,2,4} {1,2,4} {3,4}
{3,5,6} {1,2,4}
{3,5,6}
MATHEMATICA
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
maxim[s_]:=Complement[s, Last/@Select[Tuples[s, 2], UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]], stableQ[#, SubsetQ[binpos[#1], binpos[#2]]&]&]]], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 28 2019
STATUS
approved