login
A325095
Number of subsets of {1...n} with no binary carries.
13
1, 2, 4, 5, 10, 12, 14, 15, 30, 35, 40, 42, 47, 49, 51, 52, 104, 119, 134, 139, 154, 159, 164, 166, 181, 186, 191, 193, 198, 200, 202, 203, 406, 458, 510, 525, 577, 592, 607, 612, 664, 679, 694, 699, 714, 719, 724, 726, 778, 793, 808, 813, 828, 833, 838, 840
OFFSET
0,2
COMMENTS
A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the binary representations of {2,5,8} are:
2 = 10,
5 = 101,
8 = 1000,
and since there are no columns with more than one 1, {2,5,8} is counted under a(8).
LINKS
FORMULA
a(2^n - 1) = A000110(n + 1).
EXAMPLE
The a(1) = 1 through a(7) = 15 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2} {2}
{1,2} {3} {3} {3} {3} {3}
{1,2} {4} {4} {4} {4}
{1,2} {5} {5} {5}
{1,4} {1,2} {6} {6}
{2,4} {1,4} {1,2} {7}
{3,4} {2,4} {1,4} {1,2}
{1,2,4} {2,5} {1,6} {1,4}
{3,4} {2,4} {1,6}
{1,2,4} {2,5} {2,4}
{3,4} {2,5}
{1,2,4} {3,4}
{1,2,4}
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1, b(n-1, t)+
`if`(Bits[And](n, t)=0, b(n-1, Bits[Or](n, t)), 0))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..63); # Alois P. Heinz, Mar 28 2019
MATHEMATICA
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[Subsets[Range[n]], stableQ[#, Intersection[binpos[#1], binpos[#2]]!={}&]&]], {n, 0, 10}]
KEYWORD
nonn,look
AUTHOR
Gus Wiseman, Mar 27 2019
EXTENSIONS
a(16)-a(55) from Alois P. Heinz, Mar 28 2019
STATUS
approved