login
A329474
a(n) = log_2(A110428(n)). Also, a(n) = a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 0 and a(2) = 1.
1
0, 1, 1, 2, 2, 4, 5, 6, 6, 12, 17, 21, 23, 25, 26, 27, 27, 54, 80, 105, 128, 149, 166, 178, 184, 190, 195, 199, 201, 203, 204, 205, 205, 410, 614, 817, 1018, 1217, 1412, 1602, 1786, 1964, 2130, 2279, 2407, 2512, 2592, 2646, 2673, 2700, 2726, 2751, 2774, 2795, 2812, 2824, 2830
OFFSET
1,4
FORMULA
2^a(n) = A110428(n).
MAPLE
a := proc(n) option remember;
`if`(n < 3, [0, 1][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
seq(a(n), n = 1..50); #
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Nov 13 2019
STATUS
approved