login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260295
Expansion of f(-x^2)^3 * f(-x^6)^3 / f(-x)^2 in powers of x where f() is a Ramanujan theta function.
3
1, 2, 2, 4, 5, 6, 7, 6, 9, 8, 11, 14, 10, 14, 15, 16, 14, 14, 19, 20, 21, 22, 21, 20, 28, 26, 24, 22, 29, 30, 26, 32, 26, 38, 35, 36, 37, 28, 39, 40, 41, 42, 34, 40, 43, 42, 47, 42, 49, 50, 56, 44, 42, 54, 55, 62, 57, 46, 50, 60, 56, 62, 50, 70, 60, 56, 74, 54
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-11/12) * eta(q^2)^3 * eta(q^6)^3 / eta(q)^2 in powers of q.
Euler transform of period 6 sequence [2, -1, 2, -1, 2, -4, ...]. - Michael Somos, Aug 01 2018
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 6*x^7 + ...
G.f. = q^11 + 2*q^23 + 2*q^35 + 4*q^47 + 5*q^59 + 6*q^71 + 7*q^83 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 QPochhammer[ x^6]^3 / QPochhammer[ x]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A)^3 / eta(x + A)^2, n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^3*eta(q^6)^3/eta(q)^2) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Sequence in context: A059015 A325108 A329474 * A024683 A244017 A339022
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 07 2015
STATUS
approved