OFFSET
0,4
COMMENTS
A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..600
EXAMPLE
The a(1) = 1 through a(12) = 3 partitions (A = 10, B = 11, C = 12):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C)
(21) (41) (42) (43) (53) (63) (82) (65) (84)
(52) (81) (83) (93)
(61) (92)
(421) (A1)
(821)
MATHEMATICA
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&stableQ[#, SubsetQ[binpos[#1], binpos[#2]]&]&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 28 2019
STATUS
approved