login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325112 Integers such that no nonzero subsequence of decimal representation is divisible by 3. 4
1, 2, 4, 5, 7, 8, 10, 11, 14, 17, 20, 22, 25, 28, 40, 41, 44, 47, 50, 52, 55, 58, 70, 71, 74, 77, 80, 82, 85, 88, 100, 101, 104, 107, 110, 140, 170, 200, 202, 205, 208, 220, 250, 280, 400, 401, 404, 407, 410, 440, 470, 500, 502, 505, 508, 520, 550, 580, 700 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Integers whose decimal representation contains either just one nonzero digit, which == 1 or 2 (mod 3), or just two nonzero digits, which are either both == 1 (mod 3) or both == 2 (mod 3). - Robert Israel, Dec 25 2019

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

F:= proc(d) local i, j, k, g;

   g:= [1, 2, 4, 5, 7, 8];

   op(sort([seq(i*10^(d-1), i=g), seq(seq(seq(i*10^(d-1) + j*10^k, j = select(t -> (t-i) mod 3 = 0, g)), k=0..d-2), i=g)]));

end proc:

seq(F(d), d=1..4); # Robert Israel, Dec 25 2019

MATHEMATICA

With[{k = 3}, Select[Range@ 700, NoneTrue[DeleteCases[FromDigits /@ Rest@ Subsequences[IntegerDigits@ #], 0], Mod[#, k] == 0 &] &]] (* Michael De Vlieger, Mar 31 2019 *)

CROSSREFS

Cf. A014261 (for 2), A325113 (for 4), A261189 (for 5), A325114 (for 7).

A261188 is a subsequence.

Sequence in context: A213539 A190849 A277121 * A102338 A285401 A139449

Adjacent sequences:  A325109 A325110 A325111 * A325113 A325114 A325115

KEYWORD

nonn,base

AUTHOR

Jonathan Kal-El Peréz, Mar 27 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 12:51 EDT 2021. Contains 347688 sequences. (Running on oeis4.)