login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285401
Positions of 0 in A285177; complement of A285402.
9
1, 2, 4, 5, 7, 8, 10, 11, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 74, 75, 81, 82, 88, 89, 95, 96, 102, 103, 105, 106, 108, 109, 111, 112, 114, 115, 121, 122, 124, 125, 127, 128
OFFSET
1,2
COMMENTS
Conjecture: a(n)/n -> (61-sqrt(3))/26 = 2.279...
From Michel Dekking, Feb 10 2021: (Start)
This conjecture is false. In fact,
a(n)/n --> (5+sqrt(17))/4 = 2.28077...
Let mu be the defining morphism for A285177, i.e,
mu(0) = 11, mu(1) = 001.
The sequence A285177 is the fixed point x = 0010010010011111... starting with 0 of mu^2:
mu^2(0) = 001001, mu^2(1) = 1111001.
The 0's in x are at positions a(1)=1, a(2)=2, a(3)=4, etc.
Now suppose that N_0(K) = n is the number of 0's in a prefix x[1,K] of length K of x. Then obviously a(n) = K +/- 6.
Also N_0(K) + N_1(K) = K, where N_1(K) is the number of 1's in x[1,K].
So
K/N_0(K) = a(n)/n +/- 6/n.
Letting n tend to infinity, we find that
a(n)/n --> 1/f0,
where f0 is the frequency of 0's in x.
It is well known that these exist and are equal to the normalized eigenvector of the Perron-Frobenius eigenvalue of the incidence matrix of the morphism mu.
A simple computation yields that f0 = 4/(5+sqrt(17)).
It follows that a(n)/n --> (5+sqrt(17))/4.
(End)
LINKS
EXAMPLE
As a word, A285177 = 001001..., in which 0 is in positions 1,2,4,5,7,...
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {0, 0, 1}}] &, {0}, 10] (* A285177 *)
Flatten[Position[s, 0]] (* A285401 *)
Flatten[Position[s, 1]] (* A285402 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 26 2017
STATUS
approved