



3, 6, 9, 12, 13, 14, 15, 16, 19, 22, 25, 28, 31, 32, 33, 34, 35, 38, 41, 44, 47, 50, 51, 52, 53, 54, 57, 60, 63, 66, 69, 70, 71, 72, 73, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 104, 107, 110, 113, 116, 117, 118, 119
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: a(n)/n > (82 + sqrt(3))/47 = 1.781...
This conjecture is false. In fact, a(n)/n > (5+sqrt(17))/(1+sqrt(17)) = 1.7807764... = A188485. See A285401. It follows in the same way as there, that a(n)/n > 1/f1, where f1 is the frequency of 1's in A285177, and f1 can be computed using the Perron Frobenius theorem.  Michel Dekking, Feb 10 2021


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

As a word, A285177 = 001001..., in which 0 is in positions 3,6,9,12,13,...


MATHEMATICA

s = Nest[Flatten[# /. {0 > {1, 1}, 1 > {0, 0, 1}}] &, {0}, 10] (* A285177 *)
Flatten[Position[s, 0]] (* A285401 *)
Flatten[Position[s, 1]] (* A285402 *)


CROSSREFS

Cf. A188485, A285177, A285401, A285403.
Sequence in context: A066662 A329517 A297567 * A153403 A336341 A257220
Adjacent sequences: A285399 A285400 A285401 * A285403 A285404 A285405


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 26 2017


STATUS

approved



