login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324985
a(n) = denominator of Sum_{d|n} (pod(d)/sigma(d)) where pod(k) = the product of the divisors of k (A007955) and sigma(k) = the sum of the divisors of k (A000203).
1
1, 3, 4, 21, 6, 12, 8, 105, 52, 18, 12, 84, 14, 24, 24, 3255, 18, 156, 20, 126, 32, 36, 24, 420, 186, 42, 520, 168, 30, 72, 32, 9765, 48, 54, 48, 156, 38, 60, 56, 70, 42, 96, 44, 252, 312, 72, 48, 13020, 456, 558, 72, 294, 54, 1560, 72, 840, 16, 90, 60, 504
OFFSET
1,2
COMMENTS
Sum_{d|n} (pod(d)/tau(d)) > 1 for all n > 1.
EXAMPLE
For n=4; Sum_{d|4} (pod(d)/sigma(d)) = pod(1)/sigma(1) + pod(2)/sigma(2) + pod(4)/sigma(4) = 1/1 + 2/3 + 8/7 = 59/21; a(4) = 21.
MATHEMATICA
Array[Denominator@ DivisorSum[#, Apply[Times, Divisors@ #]/DivisorSigma[1, #] &] &, 60] (* Michael De Vlieger, Mar 24 2019 *)
PROG
(Magma) [Denominator(&+[&*[c: c in Divisors(d)] / SumOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = denominator(sumdiv(n, d, vecprod(divisors(d))/sigma(d))); \\ Michel Marcus, Mar 23 2019
CROSSREFS
Cf. A000203, A007955, A324984 (numerators).
Sequence in context: A265710 A322673 A306650 * A069934 A206031 A206032
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 22 2019
STATUS
approved