login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324983
a(n) = denominator of Sum_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k (A007955) and tau(k) = the number of the divisors of k (A000005).
2
1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 4, 15, 2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 4, 6, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 30, 6, 2, 4, 6, 2, 4, 4, 6, 4, 2, 2, 4, 2, 2, 4, 35, 4, 4, 2, 2, 4, 4, 2, 6, 2, 2, 12, 6, 4, 4, 2, 10, 20, 2, 2, 12, 4
OFFSET
1,3
COMMENTS
Sum_{d|n} (pod(d)/tau(d)) > 1 for all n > 1.
LINKS
FORMULA
a(p) = 2 for p = odd primes.
EXAMPLE
Sum_{d|n} (pod(d)/tau(d)) for n >= 1: 1, 2, 5/2, 14/3, 7/2, 25/2, 9/2, 62/3, 23/2, 59/2, ...
For n=4; Sum_{d|4} (pod(d)/tau(d)) = pod(1)/tau(1) + pod(2)/tau(2) + pod(4)/tau(4) = 1/1 + 2/2 + 8/3 = 14/3; a(4) = 3.
MATHEMATICA
Array[Denominator@ DivisorSum[#, Apply[Times, Divisors@ #]/DivisorSigma[0, #] &] &, 85] (* Michael De Vlieger, Mar 24 2019 *)
PROG
(Magma) [Denominator(&+[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = denominator(sumdiv(n, d, vecprod(divisors(d))/numdiv(d))); \\ Michel Marcus, Mar 23 2019
CROSSREFS
Cf. A000203, A007955, A324982 (numerators).
Sequence in context: A086410 A185049 A186181 * A147561 A210659 A103266
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 22 2019
STATUS
approved