login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324988
Palindromes whose number of divisors is palindromic.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 262, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 424, 434, 454, 474, 484, 494, 505, 515, 535, 545
OFFSET
1,2
COMMENTS
Numbers m such that m and A000005(m) = tau(m) are both in A002113.
EXAMPLE
Number of divisors of palindrome number 22 with divisors 1, 2, 11 and 22 is 4 (palindrome number).
MAPLE
ispali:= proc(n) local L; L:= convert(n, base, 10); L = ListTools:-Reverse(L) end proc:
select(t -> ispali(t) and ispali(numtheory:-tau(t)), [$1..10000]); # Robert Israel, Mar 26 2019
MATHEMATICA
Select[Range@ 600, And[PalindromeQ@ #, PalindromeQ@ DivisorSigma[0, #]] &] (* Michael De Vlieger, Mar 24 2019 *)
PROG
(Magma) [n: n in [1..1000] | Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(NumberOfDivisors(n), 10) eq Reverse(Intseq(NumberOfDivisors(n), 10))]
(PARI) ispal(n) = my(d=digits(n)); Vecrev(d) == d;
isok(n) = ispal(n) && ispal(numdiv(n)); \\ Michel Marcus, Mar 23 2019
CROSSREFS
Similar sequences for functions sigma(m) and pod(m): A028986, A324989.
Includes A002385, A046328 and A046329.
Sequence in context: A227858 A335779 A240601 * A276354 A084982 A110785
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Mar 23 2019
STATUS
approved