login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323307
Number of ways to fill a matrix with the parts of a multiset whose multiplicities are the prime indices of n.
11
1, 1, 2, 4, 2, 6, 3, 12, 18, 12, 2, 36, 4, 10, 20, 72, 2, 60, 4, 40, 60, 24, 3, 120, 80, 14, 360, 120, 4, 240, 2, 240, 42, 32, 70, 720, 6, 27, 112, 480, 2, 210, 4, 84, 420, 40, 4, 1440, 280, 280, 108, 224, 5, 1260, 224, 420, 180, 22, 2, 840, 6, 72, 1680, 2880
OFFSET
1,3
COMMENTS
This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
FORMULA
a(n) = A318762(n) * A000005(A056239(n)).
EXAMPLE
The a(22) = 24 matrices:
[111112] [111121] [111211] [112111] [121111] [211111]
.
[111] [111] [111] [112] [121] [211]
[112] [121] [211] [111] [111] [111]
.
[11] [11] [11] [11] [12] [21]
[11] [11] [12] [21] [11] [11]
[12] [21] [11] [11] [11] [11]
.
[1] [1] [1] [1] [1] [2]
[1] [1] [1] [1] [2] [1]
[1] [1] [1] [2] [1] [1]
[1] [1] [2] [1] [1] [1]
[1] [2] [1] [1] [1] [1]
[2] [1] [1] [1] [1] [1]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]], {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Array[Length[ptnmats[Times@@Prime/@nrmptn[#]]]&, 30]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 13 2019
STATUS
approved