The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328985 First differences of A328984. 3
 2, 4, -2, 6, -3, 9, -7, 11, -8, 14, -12, 16, -13, 19, -17, 21, -18, 24, -22, 26, -23, 29, -27, 31, -28, 34, -32, 36, -33, 39, -37, 41, -38, 44, -42, 46, -43, 49, -47, 51, -48, 54, -52, 56, -53, 59, -57, 61, -58, 64, -62, 66, -63, 69, -67, 71, -68, 74 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is a simplified version of A328196. Conjecture: satisfies a linear recurrence having signature (-1, 0, 0, 1, 1). - Harvey P. Dale, Apr 06 2021 LINKS FORMULA If n is a multiple of 4 then a(n) = 5*t+1 where t = n/4; if n is 2 mod 4 then a(n) = 5*t+4 where t = (n-2)/4; if n is 1 mod 4 then a(n) = -(5*t-2) where t = (n-1)/4; if n i s 3 mod 4 then a(n) = -(5*t+2) where t = (n-3)/4. From Colin Barker, Nov 07 2019: (Start) G.f.: x*(2 + 6*x + 2*x^2 + 4*x^3 + x^4) / ((1+x)*(1-x^4)). a(n) = -a(n-1) + a(n-4) + a(n-5) for n>5. (End) MATHEMATICA Differences[Table[Which[EvenQ[n], Floor[(5 n/2+1)/2], Mod[n, 4]==1, 10 (n-1)/4+1, True, 10 (n-3)/4+7], {n, 70}]] (* Harvey P. Dale, Apr 06 2021 *) CROSSREFS Cf. A328190, A328196, A328984. Sequence in context: A230436 A105393 A182812 * A328196 A323307 A215841 Adjacent sequences:  A328982 A328983 A328984 * A328986 A328987 A328988 KEYWORD sign,changed AUTHOR N. J. A. Sloane, Nov 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 00:18 EDT 2021. Contains 343098 sequences. (Running on oeis4.)