

A272327


Table read by antidiagonals: T(n, k) is the least i > n such that n divides i^k (n > 0, k > 0).


1



2, 4, 2, 6, 4, 2, 8, 6, 4, 2, 10, 6, 6, 4, 2, 12, 10, 6, 6, 4, 2, 14, 12, 10, 6, 6, 4, 2, 16, 14, 12, 10, 6, 6, 4, 2, 18, 12, 14, 12, 10, 6, 6, 4, 2, 20, 12, 10, 14, 12, 10, 6, 6, 4, 2, 22, 20, 12, 10, 14, 12, 10, 6, 6, 4, 2, 24, 22, 20, 12, 10, 14, 12, 10, 6
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

T(n, k) = 2*n for squarefree n.


LINKS



EXAMPLE

a(1) = T(1, 1) = 2 because 1 divides 2^1
a(2) = T(2, 1) = 4 because 2 divides 4^1
a(3) = T(1, 2) = 2 because 1 divides 2^2
a(4) = T(3, 1) = 6 because 3 divides 6^1
a(5) = T(2, 2) = 4 because 2 divides 4^2
a(6) = T(1, 3) = 2 because 1 divides 2^3
a(7) = T(4, 1) = 8 because 4 divides 8^1
a(8) = T(3, 2) = 6 because 3 divides 6^2
a(9) = T(2, 3) = 4 because 2 divides 4^3
a(10) = T(1, 4) = 2 because 1 divides 2^4
Triangle begins:
2 2 2 2 2 2
4 4 4 4 4
6 6 6 6
8 6 6
10 10
12


MATHEMATICA

Table[Function[m, SelectFirst[Range[m + 1, 10^3], Divisible[#^k, m] &]][n  k + 1], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Apr 25 2016, Version 10 *)


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



