login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322230 E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows. 5
1, 1, 2, 1, 28, 16, 1, 270, 1032, 272, 1, 2456, 36096, 52736, 7936, 1, 22138, 1035088, 4766048, 3646208, 353792, 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256, 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312, 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976, 1, 145282674, 445736371872, 51882638754240, 1013356176688128, 5416305638467584, 9498855414644736, 5590122715250688, 961530104709120, 29088885112832 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals a row reversal of triangle A325220.

Appears to be a row reversal of EG1 triangle A162005, which has other formulas.

Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).

Compare also to Michael Pawellek's generalized elliptic functions.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..860 terms of this triangle read by rows 0..40.

FORMULA

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1) * k^(2*j) / (2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:

(1a) S = Integral C*D^2 dx.

(1b) C = 1 + Integral S*D^2 dx.

(1c) D = 1 + k^2 * Integral S*C*D dx.

(2a) C^2 - S^2 = 1.

(2b) D^2 - k^2*S^2 = 1.

(3a) C + S = exp( Integral D^2 dx ).

(3b) D + k*S = exp( k * Integral C*D dx ).

(4a) S = sinh( Integral D^2 dx ).

(4b) S = sinh( k * Integral C*D dx ) / k.

(4c) C = cosh( Integral D^2 dx ).

(4d) D = cosh( k * Integral C*D dx ).

(5a) d/dx S = C*D^2.

(5b) d/dx C = S*D^2.

(5c) d/dx D = k^2 * S*C*D.

From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):

Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then

(6a) S = -i * sn( i * Integral D dx, k),

(6b) C = cn( i * Integral D dx, k),

(6c) D = dn( i * Integral D dx, k).

(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),

(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),

(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)

Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.

Main diagonal equals A000182, the tangent numbers.

EXAMPLE

E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...

such that C(x,k)^2 - S(x,k)^2 = 1.

This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:

1;

1, 2;

1, 28, 16;

1, 270, 1032, 272;

1, 2456, 36096, 52736, 7936;

1, 22138, 1035088, 4766048, 3646208, 353792;

1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;

1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;

1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...

RELATED SERIES.

The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts

C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...

The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts

D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...

PROG

(PARI) N=10;

{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D)); }

for(n=0, N, for(j=0, n, print1( (2*n+1)!*polcoeff(polcoeff(S, 2*n+1, x), 2*j, k), ", ")) ; print(""))

CROSSREFS

Cf. A000182 (diagonal), A162006, A162007, A162008, A162009, A162010.

Cf. A322231 (C), A322232 (D).

Cf. A325220 (row reversal), A162005.

Sequence in context: A235031 A138955 A089963 * A012411 A012415 A012660

Adjacent sequences:  A322227 A322228 A322229 * A322231 A322232 A322233

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Dec 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 15:09 EST 2019. Contains 329896 sequences. (Running on oeis4.)