login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089963
a(n) = Taylor coefficient at x=li(e) of the inverse of the function li(x) (the logarithm integral) multiplied by exp(n).
2
1, 0, -1, 2, 1, -26, 99, 90, -3627, 21054, 21735, -1465278, 11769033, 10145862, -1292734485, 13592476842, 5651236989, -2114795158962, 28081762413807, -8040489684078, -5763467251713423, 94263221264053590, -115569462262872717, -24259606258553011206, 479901663461939425317
OFFSET
1,4
COMMENTS
Define the inverse of li(x) by H(z) and the point Zo = li(e). Then H(z)= e + a(1)*exp(-1)*(z-Zo)/1 + a(2)*exp(-2)*(z-Zo)^2/2! + a(3)*exp(-3)*(z-Zo)^3/3! + ...
REFERENCES
D. Dominici, Nested derivatives: a simple method for computing series expansions of inverse functions, IJMMS 2003:58, 3699-3715.
CROSSREFS
Sequence in context: A098878 A235031 A138955 * A362013 A336911 A322230
KEYWORD
sign
AUTHOR
Diego Dominici (dominicd(AT)newpaltz.edu), Jan 12 2004
STATUS
approved