login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362013
Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.
1
1, 0, 1, 1, 2, 1, 27, 27, 9, 1, 2401, 1372, 294, 28, 1, 759375, 253125, 33750, 2250, 75, 1, 887503681, 171774906, 13852815, 595820, 14415, 186, 1, 3938980639167, 437664515463, 20841167403, 551353635, 8751645, 83349, 441, 1, 67675234241018881, 4263006881324024, 117484441611292, 1850148686792, 18210124870, 114709448, 451612, 1016, 1
OFFSET
0,5
LINKS
E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
1, 2, 1;
27, 27, 9, 1;
2401, 1372, 294, 28, 1;
759375, 253125, 33750, 2250, 75, 1;
...
MATHEMATICA
nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]
CROSSREFS
Cf. A086206 (column k=0), A053763 (row sums), A361592, A350792 (a subclass of the digraphs for the case k=1 of this sequence), A003028.
Sequence in context: A235031 A138955 A089963 * A336911 A322230 A353910
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Apr 03 2023
STATUS
approved