login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322229 Triangle, read by rows, where row n lists coefficients in Product_{k=1..n} (k + x + (n+1-k)*x^2), for n >= 0. 3
1, 1, 1, 1, 2, 3, 6, 3, 2, 6, 11, 32, 27, 32, 11, 6, 24, 50, 189, 210, 350, 210, 189, 50, 24, 120, 274, 1269, 1689, 3594, 2915, 3594, 1689, 1269, 274, 120, 720, 1764, 9652, 14651, 37750, 37457, 58156, 37457, 37750, 14651, 9652, 1764, 720, 5040, 13068, 82396, 138473, 417780, 481074, 896412, 714483, 896412, 481074, 417780, 138473, 82396, 13068, 5040, 40320, 109584, 781820, 1426428, 4923585, 6370164, 13808832, 12899520, 19279494, 12899520, 13808832, 6370164, 4923585, 1426428, 781820, 109584, 40320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums equal A000272(n+2) = (n+2)^n, for n >= 0.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1680 terms of this irregular triangle, as read by rows 0..40.

FORMULA

T(n,0) = T(n,2*n) = n!, for n >= 0.

Sum_{k=0..2*n} T(n,k) = (n+2)^n, for n >= 0.

Sum_{k=0..2*n} T(n,k)*(-1)^k = n^n, for n >= 0.

EXAMPLE

This triangle, where row n gives coefficients in Product_{k=1..n} (k + x + (n+1-k)*x^2), begins

1;

1, 1, 1;

2, 3, 6, 3, 2;

6, 11, 32, 27, 32, 11, 6;

24, 50, 189, 210, 350, 210, 189, 50, 24;

120, 274, 1269, 1689, 3594, 2915, 3594, 1689, 1269, 274, 120;

720, 1764, 9652, 14651, 37750, 37457, 58156, 37457, 37750, 14651, 9652, 1764, 720;

5040, 13068, 82396, 138473, 417780, 481074, 896412, 714483, 896412, 481074, 417780, 138473, 82396, 13068, 5040;

40320, 109584, 781820, 1426428, 4923585, 6370164, 13808832, 12899520, 19279494, 12899520, 13808832, 6370164, 4923585, 1426428, 781820, 109584, 40320;

362880, 1026576, 8172540, 15965072, 61978425, 88164321, 217535135, 230299722, 398293065, 314352219, 398293065, 230299722, 217535135, 88164321, 61978425, 15965072, 8172540, 1026576, 362880; ...

Example of row generating functions.

Row 0: 1;

Row 1: (1 + x + 1*x^2);

Row 2: (1 + x + 2*x^2)*(2 + x + 1*x^2)  =  2 + 3*x + 6*x^2 + 3*x^3 + 2*x^4;

Row 3: (1 + x + 3*x^2)*(2 + x + 2*x^2)*(3 + x + 1*x^2)  =  6 + 11*x + 32*x^2 + 27*x^3 + 32*x^4 + 11*x^5 + 6*x^6;

Row 4: (1 + x + 4*x^2)*(2 + x + 3*x^2)*(3 + x + 2*x^2)*(4 + x + 1*x^2)  =  24 + 50*x + 189*x^2 + 210*x^3 + 350*x^4 + 210*x^5 + 189*x^6 + 50*x^7 + 24*x^8;

Row 5: (1 + x + 5*x^2)*(2 + x + 4*x^2)*(3 + x + 3*x^2)*(4 + x + 2*x^2)*(5 + x + 1*x^2)  =  120 + 274*x + 1269*x^2 + 1689*x^3 + 3594*x^4 + 2915*x^5 + 3594*x^6 + 1689*x^7 + 1269*x^8 + 274*x^9 + 120*x^10;

...

Row sums = [1, 3, 16, 125, 1296, 16807, 262144, 4782969, ..., (n+2)^n, ...].

Main diagonal = [1, 1, 6, 27, 350, 2915, 58156, 714483, ..., A322233(n), ...].

Secondary diagonal = [1, 3, 32, 210, 3594, 37457, 896412, ..., A322234(n), ...].

MATHEMATICA

row[n_] := Product[k + x + (n - k + 1) x^2, {k, 1, n}] + O[x]^(2 n + 1) // CoefficientList[#, x]&;

Table[row[n], {n, 0, 8}] // Flatten (* Jean-Fran├žois Alcover, Dec 29 2018 *)

PROG

(PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x + (n+1-m)*x^2) +x*O(x^k), k)}

for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

CROSSREFS

Cf. A000272 (row sums), A322233 (main diagonal), A322234 (diagonal).

Sequence in context: A189971 A211605 A316610 * A245886 A224504 A216059

Adjacent sequences:  A322226 A322227 A322228 * A322230 A322231 A322232

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Dec 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)