Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Apr 26 2019 20:39:49
%S 1,1,2,1,28,16,1,270,1032,272,1,2456,36096,52736,7936,1,22138,1035088,
%T 4766048,3646208,353792,1,199284,27426960,319830400,704357760,
%U 330545664,22368256,1,1793606,702812568,18598875760,93989648000,120536980224,38188155904,1903757312,1,16142512,17753262208,1002968825344,10324483102720,28745874079744,24060789342208,5488365862912,209865342976,1,145282674,445736371872,51882638754240,1013356176688128,5416305638467584,9498855414644736,5590122715250688,961530104709120,29088885112832
%N E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.
%C Equals a row reversal of triangle A325220.
%C Appears to be a row reversal of EG1 triangle A162005, which has other formulas.
%C Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).
%C Compare also to Michael Pawellek's generalized elliptic functions.
%H Paul D. Hanna, <a href="/A322230/b322230.txt">Table of n, a(n) for n = 0..860 terms of this triangle read by rows 0..40.</a>
%F E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1) * k^(2*j) / (2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
%F (1a) S = Integral C*D^2 dx.
%F (1b) C = 1 + Integral S*D^2 dx.
%F (1c) D = 1 + k^2 * Integral S*C*D dx.
%F (2a) C^2 - S^2 = 1.
%F (2b) D^2 - k^2*S^2 = 1.
%F (3a) C + S = exp( Integral D^2 dx ).
%F (3b) D + k*S = exp( k * Integral C*D dx ).
%F (4a) S = sinh( Integral D^2 dx ).
%F (4b) S = sinh( k * Integral C*D dx ) / k.
%F (4c) C = cosh( Integral D^2 dx ).
%F (4d) D = cosh( k * Integral C*D dx ).
%F (5a) d/dx S = C*D^2.
%F (5b) d/dx C = S*D^2.
%F (5c) d/dx D = k^2 * S*C*D.
%F From _Paul D. Hanna_, Mar 31 2019, Apr 20 2019 (Start):
%F Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
%F (6a) S = -i * sn( i * Integral D dx, k),
%F (6b) C = cn( i * Integral D dx, k),
%F (6c) D = dn( i * Integral D dx, k).
%F (7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
%F (7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
%F (7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
%F Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
%F Main diagonal equals A000182, the tangent numbers.
%e E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
%e such that C(x,k)^2 - S(x,k)^2 = 1.
%e This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
%e 1;
%e 1, 2;
%e 1, 28, 16;
%e 1, 270, 1032, 272;
%e 1, 2456, 36096, 52736, 7936;
%e 1, 22138, 1035088, 4766048, 3646208, 353792;
%e 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;
%e 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;
%e 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...
%e RELATED SERIES.
%e The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
%e C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
%e The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
%e D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
%o (PARI) N=10;
%o {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
%o for(n=0,N, for(j=0,n, print1( (2*n+1)!*polcoeff(polcoeff(S,2*n+1,x),2*j,k),", ")) ;print(""))
%Y Cf. A000182 (diagonal), A162006, A162007, A162008, A162009, A162010.
%Y Cf. A322231 (C), A322232 (D).
%Y Cf. A325220 (row reversal), A162005.
%K nonn,tabl
%O 0,3
%A _Paul D. Hanna_, Dec 14 2018