login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322093 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1. 10
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Seiichi Manyama, Antidiagonals n = 1..52, flattened

Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.

FORMULA

A(n,k) = k! * A322013(n,k).

Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.

A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.

EXAMPLE

Square array begins:

   1, 2,    6,        24,           120,                 720, ...

   0, 2,   30,       864,         39480,             2631600, ...

   0, 2,  174,     41304,      19606320,         16438575600, ...

   0, 2, 1092,   2265024,   11804626080,     131402141197200, ...

   0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...

CROSSREFS

Columns k=3 gives A110706.

Rows n=1..10 give A000142, A114938, A193638, A321633, A322126, A321382, A322095, A322096, A322145, A322146.

Main diagonal gives A321634.

Cf. A322013.

Sequence in context: A095832 A248162 A143381 * A277681 A140876 A243997

Adjacent sequences:  A322090 A322091 A322092 * A322094 A322095 A322096

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, Nov 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 05:37 EDT 2022. Contains 353889 sequences. (Running on oeis4.)