login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322093
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
14
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
OFFSET
1,2
LINKS
FORMULA
A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.
EXAMPLE
Square array begins:
1, 2, 6, 24, 120, 720, ...
0, 2, 30, 864, 39480, 2631600, ...
0, 2, 174, 41304, 19606320, 16438575600, ...
0, 2, 1092, 2265024, 11804626080, 131402141197200, ...
0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
MATHEMATICA
Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]], {n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
PROG
(PARI)
q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n, k) = subst(serlaplace(q(n, x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024
CROSSREFS
Columns k=3 gives A110706.
Main diagonal gives A321634.
Cf. A322013.
Sequence in context: A095832 A248162 A143381 * A277681 A140876 A243997
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 26 2018
STATUS
approved