Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Nov 13 2024 08:30:16
%S 1,2,0,6,2,0,24,30,2,0,120,864,174,2,0,720,39480,41304,1092,2,0,5040,
%T 2631600,19606320,2265024,7188,2,0,40320,241133760,16438575600,
%U 11804626080,134631576,48852,2,0,362880,29083420800,22278418248240,131402141197200,7946203275000,8437796016,339720,2,0
%N Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
%H Seiichi Manyama, <a href="/A322093/b322093.txt">Antidiagonals n = 1..52, flattened</a>
%H Mathematics.StackExchange, <a href="https://math.stackexchange.com/questions/129451/find-the-number-of-arrangements-of-k-mbox-1s-k-mbox-2s-cdots">Find the number of k 1's, k 2's, ... , k n's - total kn cards</a>, Apr 08 2012.
%F A(n,k) = k! * A322013(n,k).
%F Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
%F A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.
%e Square array begins:
%e 1, 2, 6, 24, 120, 720, ...
%e 0, 2, 30, 864, 39480, 2631600, ...
%e 0, 2, 174, 41304, 19606320, 16438575600, ...
%e 0, 2, 1092, 2265024, 11804626080, 131402141197200, ...
%e 0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
%t Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* _Zlatko Damijanic_, Nov 03 2024 *)
%o (PARI)
%o q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
%o T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ _Andrew Howroyd_, Feb 03 2024
%Y Columns k=3 gives A110706.
%Y Rows n=1..10 give A000142, A114938, A193638, A321633, A322126, A321382, A322095, A322096, A322145, A322146.
%Y Main diagonal gives A321634.
%Y Cf. A322013.
%K nonn,tabl
%O 1,2
%A _Seiichi Manyama_, Nov 26 2018