login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321576
a(n) is the smallest b > 1 such that b^n - (b-1)^n has all divisors d == 1 (mod n).
1
2, 2, 2, 3, 2, 4, 2, 45, 3, 6, 2, 301, 2, 15, 10, 121, 2, 64, 2, 2101, 7, 12, 2, 1900081, 6, 27, 18, 225, 2, 9241, 2, 31825, 12, 52, 31, 537850405, 2, 96, 26, 13568281, 2, 232, 2, 35421, 486, 24, 2, 4164776161, 7, 2101, 68, 10765, 2, 145180, 1925
OFFSET
1,1
COMMENTS
For n > 1, a(n) is the least b > 1 such that b^n - (b-1)^n has all prime divisors p == 1 (mod n).
If n is prime, then a(n) = 2. Conjecture: If n is composite, then a(n) > 2.
From Kevin P. Thompson, May 27 2022: (Start)
Sequence continues for n = 56..95 (unconfirmed terms marked with a '?'): 20301625?, 171, 30, 2, ?, 2, 156, 18298, 405825?, 442, 361285?, 2, 8365, 553, 392106?, 2, ?, 2, 75, 4975?, 31351?, 1914, 247339?, 2, ?, 1513?, 42, 2, ?, 391, 87, 406?, ?, 2, ?, 39, ?, 63, 142, 145
a(60) > 1.3831*10^10.
a(72) > 1.34*10^8.
a(80) > 10^8.
a(84) > 2.29*10^8.
a(88) > 10^7.
a(90) > 10^8.
a(92) > 10^6. (End)
EXAMPLE
a(6) = 4 since b^n - (b-1)^n = 4^6 - 3^6 = 3367 has divisors 1, 7, 13, 37, 91, 259, 481, and 3367, each of which is congruent to 1 (mod 6), and b = 4 is the smallest such number satisfying this requirement.
MATHEMATICA
primes[n_]:=First@# & /@ FactorInteger[n]; bQ[m_, n_]:=AllTrue[primes[m] -1, Divisible[#, n]&] ; a[n_]:=Module[{b=2}, While[!bQ[b^n - (b-1)^n, n], b++]; b]; Array[a, 100] (* Amiram Eldar, Nov 13 2018 *)
PROG
(PARI) A321576(n)=if(n<4||isprime(n), 2, for(b=2, oo, Set(factor(b^n-(b-1)^n)[, 1]%n)==[1]&&return(b))) \\ M. F. Hasler, Nov 18 2018
CROSSREFS
Cf. A298076.
Sequence in context: A307408 A233539 A317223 * A304101 A278636 A376497
KEYWORD
nonn,more
AUTHOR
Thomas Ordowski, Nov 13 2018
EXTENSIONS
a(12)-a(23) from Amiram Eldar, Nov 13 2018
a(24)-a(55) from Kevin P. Thompson, May 27 2022
STATUS
approved