Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 28 2022 12:42:22
%S 2,2,2,3,2,4,2,45,3,6,2,301,2,15,10,121,2,64,2,2101,7,12,2,1900081,6,
%T 27,18,225,2,9241,2,31825,12,52,31,537850405,2,96,26,13568281,2,232,2,
%U 35421,486,24,2,4164776161,7,2101,68,10765,2,145180,1925
%N a(n) is the smallest b > 1 such that b^n - (b-1)^n has all divisors d == 1 (mod n).
%C For n > 1, a(n) is the least b > 1 such that b^n - (b-1)^n has all prime divisors p == 1 (mod n).
%C If n is prime, then a(n) = 2. Conjecture: If n is composite, then a(n) > 2.
%C From _Kevin P. Thompson_, May 27 2022: (Start)
%C Sequence continues for n = 56..95 (unconfirmed terms marked with a '?'): 20301625?, 171, 30, 2, ?, 2, 156, 18298, 405825?, 442, 361285?, 2, 8365, 553, 392106?, 2, ?, 2, 75, 4975?, 31351?, 1914, 247339?, 2, ?, 1513?, 42, 2, ?, 391, 87, 406?, ?, 2, ?, 39, ?, 63, 142, 145
%C a(60) > 1.3831*10^10.
%C a(72) > 1.34*10^8.
%C a(80) > 10^8.
%C a(84) > 2.29*10^8.
%C a(88) > 10^7.
%C a(90) > 10^8.
%C a(92) > 10^6. (End)
%H FactorDB, <a href="http://factordb.com/index.php?id=1100000002995815526">Status of 20301625^56-20301624^56</a>
%H Kevin P. Thompson, <a href="/A321576/a321576.txt">Factorizations to support known terms for n = 1..95</a>
%e a(6) = 4 since b^n - (b-1)^n = 4^6 - 3^6 = 3367 has divisors 1, 7, 13, 37, 91, 259, 481, and 3367, each of which is congruent to 1 (mod 6), and b = 4 is the smallest such number satisfying this requirement.
%t primes[n_]:=First@# & /@ FactorInteger[n]; bQ[m_, n_]:=AllTrue[primes[m] -1, Divisible[#, n]&] ; a[n_]:=Module[{b=2}, While[!bQ[b^n - (b-1)^n, n], b++]; b]; Array[a, 100] (* _Amiram Eldar_, Nov 13 2018 *)
%o (PARI) A321576(n)=if(n<4||isprime(n),2,for(b=2,oo,Set(factor(b^n-(b-1)^n)[,1]%n)==[1]&&return(b))) \\ _M. F. Hasler_, Nov 18 2018
%Y Cf. A298076.
%K nonn,more
%O 1,1
%A _Thomas Ordowski_, Nov 13 2018
%E a(12)-a(23) from _Amiram Eldar_, Nov 13 2018
%E a(24)-a(55) from _Kevin P. Thompson_, May 27 2022