login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321575
Nexus primary pretenders: a(n) is the smallest composite k such that n^k - (n-1)^k == 1 (mod k).
1
9, 4, 341, 4, 6, 4, 9, 4, 14, 4, 6, 4, 9, 4, 21, 4, 6, 4, 9, 4, 15, 4, 6, 4, 9, 4, 10, 4, 6, 4, 9, 4, 62, 4, 6, 4, 9, 4, 49, 4, 6, 4, 9, 4, 33, 4, 6, 4, 9, 4, 14, 4, 6, 4, 9, 4, 10, 4, 6, 4, 9, 4, 65, 4, 6, 4, 9, 4, 49, 4, 6, 4, 9, 4, 111, 4, 6, 4, 9, 4, 15
OFFSET
0,1
COMMENTS
The sequence is bounded, namely a(n) <= 561 (the smallest Carmichael number), since if n^k == n (mod k) and (n-1)^k == n-1 (mod k), then n^k - (n-1)^k == 1 (mod k).
Problem: find all distinct terms of the sequence. Is this sequence periodic like the primary pretenders?
Note that a(n) > 9 if and only if n == 2 (mod 6). We have a(6m+2) = 341, 14, 21, 15, 10, 62, 49, 33, 14, 10, 65, 49, 111, 15, 10, ... for m >= 0. Found a(n) = 561 for the smallest n = 6*70+2 = 422.
From Robert Israel, Nov 27 2018: (Start)
Since a(n) depends only on the residues of n mod k for composites k <= 561, it must be periodic with period at most the lcm of those composites.
Up to n=2*10^6, the last term to appear for the first time is 478 = a(184748).
Conjecture: the only terms of the sequence that are not squarefree are 4, 9 and 49. (End)
LINKS
FORMULA
a(n) = 4 iff n == 1,3,5 (mod 6), thus n is odd.
a(n) = 6 iff n == 4 (mod 6).
a(n) = 9 iff n == 0 (mod 6).
MAPLE
Comps:= remove(isprime, [$4..561]):
f:= proc(n) local k;
for k in Comps do if n&^k - (n-1)&^k - 1 mod k = 0 then return k fi od
end proc:
map(f, [$0..100]); # Robert Israel, Nov 27 2018
MATHEMATICA
a[n_]:=Module[{k=4}, While[PrimeQ[k] || Mod[n^k-(n-1)^k, k]!=1, k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Nov 13 2018 *)
PROG
(PARI) a(n)=forcomposite(k=4, , Mod(n, k)^k-Mod(n-1, k)^k==1&&return(k)) \\ M. F. Hasler, Nov 13 2018
CROSSREFS
Sequence in context: A298583 A038294 A214102 * A336610 A293100 A195360
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Nov 13 2018
EXTENSIONS
More terms from Amiram Eldar, Nov 13 2018
STATUS
approved