login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321572
Related to the set of Motzkin trees where all leaves are at the same unary height 2.
1
0, 1, 0, 1, 1, 3, 2, 9, 7, 27, 25, 85, 86, 287, 296, 975, 1065, 3369, 3825, 11887, 13836, 42389, 50597, 152549, 186186, 554103, 688494, 2027304, 2559958, 7461971, 9561298, 27617581, 35846863, 102707431, 134874639, 383561963, 509090498, 1437822479, 1927045425
OFFSET
0,6
COMMENTS
Row 2 of A321396, see section 3.2 in O. Bodini et al.
LINKS
Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, Zbigniew Gołębiewski, On the number of unary-binary tree-like structures with restrictions on the unary height, arXiv:1510.01167v1 [math.CO], 2015.
FORMULA
G.f.: (1 - sqrt(1 - 2*z + 2*z*sqrt(1 - 2*z + 2*z*sqrt(1 - 4*z^2))))/(2*z^3).
MAPLE
gf := -(sqrt(2*z*(sqrt(2*z*(sqrt(1-4*z^2)-1)+1)-1)+1)-1)/(2*z^3):
series(gf, z, 44): seq(coeff(%, z, n), n=0..38);
MATHEMATICA
CoefficientList[(1 - Sqrt[2 Sqrt[2 Sqrt[1 - 4z^2] z - 2z + 1] z - 2z + 1])/ (2z^3) + O[z]^40, z] (* Jean-François Alcover, Jun 03 2019 *)
CROSSREFS
Cf. A321396.
Sequence in context: A237651 A124003 A159588 * A118045 A276023 A268822
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 14 2018
STATUS
approved