OFFSET
1,5
COMMENTS
Equivalently, the number of closed convex paths of length n whose steps are the 2k-th roots of unity up to translation. For even n, there will be k paths of zero area consisting of n/2 steps in one direction followed by n/2 steps in the opposite direction.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..465
FORMULA
G.f. of column k = 2^r: 1/(1 - x^2)^k - 1.
G.f. of column k = 2^r*p^e: ((2/(1 - x^p) - 1)/(1 - x^2)^p)^(k/p) - 1 for odd prime p.
EXAMPLE
Array begins:
=========================================================
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---|-----------------------------------------------------
1 | 0 0 0 0 0 0 0 0 0 0 0 0 ...
2 | 1 2 3 4 5 6 7 8 9 10 11 12 ...
3 | 0 0 2 0 0 4 0 0 6 0 0 8 ...
4 | 1 3 6 10 15 21 28 36 45 55 66 78 ...
5 | 0 0 6 0 2 24 0 0 54 4 0 96 ...
6 | 1 4 12 20 35 64 84 120 183 220 286 396 ...
7 | 0 0 12 0 10 84 2 0 270 40 0 624 ...
8 | 1 5 21 35 70 174 210 330 657 715 1001 1749 ...
9 | 0 0 22 0 30 236 14 0 1028 220 0 3000 ...
10 | 1 6 33 56 128 420 462 792 2097 2010 3003 6864 ...
11 | 0 0 36 0 70 576 56 0 3312 880 2 11976 ...
12 | 1 7 50 84 220 926 924 1716 6039 5085 8008 24216 ...
...
T(5, 3) = 6 because there are 6 rotations of the following figure:
o---o
/ \
o---o---o
.
T(6, 3) = 12 because there are 4 basic shapes illustrated below which with rotations and reflections give 3 + 2 + 1 + 6 = 12 convex paths.
o o---o o---o
/ \ / \ \ \
o===o===o===o o o o o o o
/ \ \ / \ \
o---o---o o---o o---o
PROG
(PARI) \\ only supports k with at most one odd prime factor.
T(n, k)={my(r=valuation(k, 2), p); polcoef(if(k>>r == 1, 1/(1-x^2)^k + O(x*x^n), if(isprimepower(k>>r, &p), ((2/(1 - x^p) - 1)/(1 - x^2 + O(x*x^n))^p)^(k/p), error("Cannot handle k=", k) )), n)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Nov 08 2018
STATUS
approved