

A321417


Number of n element multisets of the 12th roots of unity with zero sum.


2



1, 0, 6, 4, 21, 24, 64, 84, 174, 236, 420, 576, 926, 1260, 1896, 2540, 3639, 4800, 6618, 8592, 11499, 14700, 19200, 24204, 30972, 38544, 48480, 59620, 73884, 89892, 109960, 132480, 160221, 191308, 229038, 271248, 321809, 378264, 445128, 519608, 606954, 704016
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Equivalently, the number of closed convex paths of length n whose steps are the 12th roots of unity up to translation. For even n, there will be 6 paths of zero area consisting of n/2 steps in one direction followed by n/2 steps in the opposite direction.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,3,6,6, 6,13,2,18, 2,13,6,6, 6,3,2,1)


FORMULA

G.f.: ((2/(1  x^3)  1)/(1  x^2)^3)^2.
G.f.: (1  x + x^2)^2/((1 + x + x^2)^2*(1  x)^8*(1 + x)^4).


PROG

(PARI) Vec(((2/(1  x^3)  1)/(1  x^2)^3)^2 + O(x^40))


CROSSREFS

Column k=6 of A321414.
Cf. A053090, A198808.
Sequence in context: A107983 A009278 A213573 * A185734 A292696 A318209
Adjacent sequences: A321414 A321415 A321416 * A321418 A321419 A321420


KEYWORD

nonn,easy


AUTHOR

Andrew Howroyd, Nov 09 2018


STATUS

approved



