login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212195
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).
14
1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
OFFSET
1,3
COMMENTS
The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.
EXAMPLE
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
3, 6, 6, 6, 6, ...
4, 48, 1056, 45696, 4038432, ...
5, 180, 32940, 30847500, 148046704020, ...
6, 480, 393600, 3312560640, 286170443437440, ...
7, 1050, 2735250, 123791435250, 97337320223288250, ...
CROSSREFS
Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.
Sequence in context: A114699 A182797 A212163 * A228926 A372727 A321414
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 03 2012
STATUS
approved