login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).
14

%I #17 Jan 28 2019 17:14:04

%S 1,0,2,0,0,3,0,0,6,4,0,0,6,48,5,0,0,6,1056,180,6,0,0,6,45696,32940,

%T 480,7,0,0,6,4038432,30847500,393600,1050,8,0,0,6,743601024,

%U 148046704020,3312560640,2735250,2016,9

%N Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

%C The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.

%C A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>

%e Square array A(n,k) begins:

%e 1, 0, 0, 0, 0, ...

%e 2, 0, 0, 0, 0, ...

%e 3, 6, 6, 6, 6, ...

%e 4, 48, 1056, 45696, 4038432, ...

%e 5, 180, 32940, 30847500, 148046704020, ...

%e 6, 480, 393600, 3312560640, 286170443437440, ...

%e 7, 1050, 2735250, 123791435250, 97337320223288250, ...

%Y Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.

%Y Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

%Y Cf. A212163, A212194.

%K nonn,tabl

%O 1,3

%A _Alois P. Heinz_, May 03 2012