login
A321348
a(n) = Sum_{d|n} tau(d^n), where tau() is the number of divisors (A000005).
5
1, 4, 5, 15, 7, 64, 9, 52, 30, 144, 13, 546, 15, 256, 289, 165, 19, 1140, 21, 1386, 529, 576, 25, 3848, 78, 784, 166, 2610, 31, 32768, 33, 486, 1225, 1296, 1369, 12321, 39, 1600, 1681, 10248, 43, 85184, 45, 6210, 6486, 2304, 49, 24250, 150, 7956
OFFSET
1,2
COMMENTS
a(n) is prime iff n is in A001359, which makes the sequence a supersequence of A006512. - Ivan N. Ianakiev, Nov 07 2018
LINKS
FORMULA
a(n) = [x^n] Sum_{k>=1} tau(k^n)*x^k/(1 - x^k).
If n = Product (p_j^k_j) then a(n) = Product ((k_j + 1)*(n*k_j + 2)/2).
a(prime(n)) = prime(n) + 2 = A052147(n). - Michel Marcus, Nov 25 2018
MAPLE
with(numtheory): seq(coeff(series(add(tau(k^n)*x^k/(1-x^k), k=1..n), x, n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
MATHEMATICA
Table[Sum[DivisorSigma[0, d^n], {d, Divisors[n]}], {n, 50}]
a[n_] := Times @@ ((#[[2]] + 1) (n #[[2]] + 2)/2 & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 50}]
PROG
(PARI) a(n) = sumdiv(n, d, numdiv(d^n)); \\ Michel Marcus, Nov 06 2018
(Magma) [&+[NumberOfDivisors(d^n): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Nov 08 2018
(Python)
from math import prod
from sympy import factorint
def A321348(n): return prod((e+1)*(n*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 06 2018
STATUS
approved