login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321348
a(n) = Sum_{d|n} tau(d^n), where tau() is the number of divisors (A000005).
5
1, 4, 5, 15, 7, 64, 9, 52, 30, 144, 13, 546, 15, 256, 289, 165, 19, 1140, 21, 1386, 529, 576, 25, 3848, 78, 784, 166, 2610, 31, 32768, 33, 486, 1225, 1296, 1369, 12321, 39, 1600, 1681, 10248, 43, 85184, 45, 6210, 6486, 2304, 49, 24250, 150, 7956
OFFSET
1,2
COMMENTS
a(n) is prime iff n is in A001359, which makes the sequence a supersequence of A006512. - Ivan N. Ianakiev, Nov 07 2018
LINKS
FORMULA
a(n) = [x^n] Sum_{k>=1} tau(k^n)*x^k/(1 - x^k).
If n = Product (p_j^k_j) then a(n) = Product ((k_j + 1)*(n*k_j + 2)/2).
a(prime(n)) = prime(n) + 2 = A052147(n). - Michel Marcus, Nov 25 2018
MAPLE
with(numtheory): seq(coeff(series(add(tau(k^n)*x^k/(1-x^k), k=1..n), x, n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
MATHEMATICA
Table[Sum[DivisorSigma[0, d^n], {d, Divisors[n]}], {n, 50}]
a[n_] := Times @@ ((#[[2]] + 1) (n #[[2]] + 2)/2 & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 50}]
PROG
(PARI) a(n) = sumdiv(n, d, numdiv(d^n)); \\ Michel Marcus, Nov 06 2018
(Magma) [&+[NumberOfDivisors(d^n): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Nov 08 2018
(Python)
from math import prod
from sympy import factorint
def A321348(n): return prod((e+1)*(n*e+2)>>1 for e in factorint(n).values()) # Chai Wah Wu, Dec 13 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 06 2018
STATUS
approved