OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} sigma(i) + sigma(n-i), where sigma(n) is the sum of divisors of n (A000203).
a(n) = - ((n+1) mod 2) * sigma(floor(n/2)) + Sum_{i=1..n-1} sigma(i), where sigma(n) is the sum of divisors of n (A000203).
a(n) = A024916(n-1) for odd n >= 3, a(n) = A024916(n-1) - A000203(n/2) for even n. - Amiram Eldar, Dec 27 2024
EXAMPLE
a(6) = 17; 6 has two partitions into distinct parts, (5,1) and (4,2). The total sum of divisors of all the parts is then sigma(5) + sigma(1) + sigma(4) + sigma(2) = 6 + 1 + 7 + 3 = 17.
MATHEMATICA
Table[Sum[DivisorSigma[1, i] + DivisorSigma[1, n - i], {i, Floor[(n - 1)/2]}], {n, 80}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 27 2020
STATUS
approved