login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330856 Total sum of divisors of all the parts in the partitions of n into 2 parts. 2
0, 2, 4, 11, 15, 25, 33, 48, 56, 75, 87, 111, 127, 149, 165, 204, 220, 251, 277, 315, 339, 383, 407, 459, 491, 536, 564, 628, 660, 714, 762, 825, 857, 923, 959, 1046, 1098, 1156, 1196, 1294, 1342, 1416, 1480, 1560, 1608, 1710, 1758, 1866, 1930, 2018, 2080, 2194, 2250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{i=1..floor(n/2)} sigma(i) + sigma(n-i), where sigma(n) is the sum of divisors of n (A000203).

a(n) = ((n+1) mod 2) * sigma(floor(n/2)) + Sum_{i=1..n-1} sigma(i), where sigma(n) is the sum of divisors of n (A000203).

EXAMPLE

a(4) = 11; 4 has two partitions into 2 parts, (3,1) and (2,2). The total sum of all divisors of the parts is sigma(3) + sigma(1) + sigma(2) + sigma(2) = 4 + 1 + 3 + 3 = 11.

MAPLE

N:= 100: # for a(1) ... a(N)

S:= map(numtheory:-sigma, [$1..N]):

T:= ListTools:-PartialSums(S):

[0, seq(T[i-1]+`if`(i::even, S[i/2], 0), i=2..N)]; # Robert Israel, Apr 29 2020

MATHEMATICA

Table[Sum[DivisorSigma[1, i] + DivisorSigma[1, n - i], {i, Floor[n/2]}], {n, 80}]

CROSSREFS

Cf. A000203, A330857 (distinct parts).

Sequence in context: A227456 A214429 A002382 * A180384 A023168 A134419

Adjacent sequences:  A330853 A330854 A330855 * A330857 A330858 A330859

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Apr 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 00:17 EDT 2021. Contains 345080 sequences. (Running on oeis4.)