|
|
A321157
|
|
Numbers that have exactly 7 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
|
|
5
|
|
|
11935, 12376, 21736, 24220, 41041, 45441, 51360, 52326, 53361, 54145, 54405, 58311, 58696, 73360, 82720, 89425, 90321, 96580, 101025, 102025, 108801, 113050, 117216, 118405, 122265, 122500, 122760, 123201, 123256, 127281, 128961, 135201, 144585, 152076, 165376, 166635, 169456, 174097
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..38.
Hugh Erling, Python program
|
|
EXAMPLE
|
11935 has representations P(n,k) = P(5, 1195) = P(7, 570) = P(10, 267) = P(14, 133) = P(35, 22) = P(55, 10) = P(154, 3).
12376 has representations P(n,k) = P(4, 2064) = P(7, 591) = P(16, 105) = P(26, 40) = P(34, 24) = P(56, 10) = P(91, 5).
21736 has representations P(n,k) = P(4, 3624) = P(8, 778) = P(11, 397) = P(16, 183) = P(19, 129) = P(22, 96) = P(208, 3).
|
|
CROSSREFS
|
Cf. A275256, A057145, A063778, A129654, A139601, A177029, A195527, A195528, A321156, A321158, A321159, A321160, A320943.
Sequence in context: A222800 A230680 A218458 * A237635 A344629 A252948
Adjacent sequences: A321154 A321155 A321156 * A321158 A321159 A321160
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Hugh Erling, Oct 29 2018
|
|
STATUS
|
approved
|
|
|
|