OFFSET
1,1
COMMENTS
The i-th k-gonal number is equal to ((k-2)*i^2-(k-4)*i)/2. Sequence lists numbers n which are k-gonal numbers with k < n in at least 6 ways. - N. J. A. Sloane, Jul 25 2016
All polygonal roots (R) can be calculated for each number by checking if any numbers less than N give an integer result from (((K - 2) * (N * N) - (K - 4) * N) / 2), where K is increased until the numbers returned are larger than our N.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
EXAMPLE
For n = 5 we have a(5) = 5985. 5985 has 6 polygonal roots, since 5985 is the 45th octagonal number, the 35th dodecagonal number, the 18th 41-gonal number, the 9th 168-gonal number, the fifth 600-gonal number, and the third 1996-gonal number.
PROG
(C#)
List<BigInteger> CurrentBases = new List<BigInteger>();
List<BigInteger> CurrentNexts = new List<BigInteger>();
private int interesting2NumberPolygons;
public int Interesting2NumberPolygons
{
get
{
return interesting2NumberPolygons;
}
set
{
interesting2NumberPolygons = value;
OnPropertyChanged("Interesting2NumberPolygons");
}
}
private BigInteger interesting2Number;
public BigInteger Interesting2Number
{
get
{
return interesting2Number;
}
set
{
interesting2Number = value;
OnPropertyChanged("Interesting2Number");
}
}
private string fileLocation = "C:/NumberGen/";
public string FileLocation
{
get
{
return fileLocation;
}
set
{
fileLocation = value;
Properties.Settings.Default.LastLocation = value;
Properties.Settings.Default.Save();
OnPropertyChanged("FileLocation");
}
}
private void FindAllIntegers()
{
Interesting2Number = 0;
Interesting2NumberPolygons = 0;
CurrentBases = new List<BigInteger>();
CurrentNexts = new List<BigInteger>();
BigInteger i = 0;
int j = 0;
while(true)
{
bool Finished = false;
int k = 3;
while (!Finished)
{
if (k >= CurrentBases.Count)
{
CurrentBases.Add(1);
CurrentNexts.Add(1);
}
else
{
if(CurrentNexts[k] < i)
{
CurrentBases[k]++;
CurrentNexts[k] = PolygonalNumber(CurrentBases[k], k);
}
if(CurrentBases[k] <= 3 && CurrentNexts[k] >= i)
{
Finished = true;
}
k++;
}
}
if(CurrentNexts.FindAll(Nexts => Nexts == i).Count >= 6)
{
List<int> Results = Enumerable.Range(0, CurrentNexts.Count)
.Where(ind => CurrentNexts[ind] == i)
.ToList();
string Row = "";
Row += i + ", " + Results.Count;
foreach(int Result in Results)
{
Row += ", " + Result + ", " + CurrentBases[Result];
}
using (StreamWriter ResultsWriter = File.AppendText(@FileLocation + "Interesting2Numbers.dat"))
{
ResultsWriter.WriteLine(Row);
}
if(Results.Count >= Interesting2NumberPolygons)
{
Interesting2NumberPolygons = Results.Count;
Interesting2Number = i;
}
}
if (i % 100 == 0)
{
Worker.ReportProgress(0, i);
using (StreamWriter DropCatcher = File.CreateText(@FileLocation + "DropCatcher.dat"))
{
DropCatcher.WriteLine(i);
}
}
j++;
i++;
}
}
private BigInteger PolygonalNumber(BigInteger N, BigInteger Sides)
{
if (Sides < 3)
{
return BigInteger.Zero;
}
//TRI: (N^2+N)/2
else if (Sides == 3)
{
return ((N * N + N) / 2);
}
//POLY: ((S-2)N^2-(S-4)N)/2
else
{
return (((Sides - 2) * (N * N) - (Sides - 4) * N) / 2);
}
}
(Python)
A275256_list = []
for m in range(2, 10**5):
n, c = 3, 0
while (n*(n+1)) <= 2*m:
if not 2*(n*(n-2) + m) % (n*(n - 1)):
c += 1
if c >= 6:
break
n += 1
if c >= 6:
A275256_list.append(m) # Chai Wah Wu, Jul 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Parker, Jul 21 2016
EXTENSIONS
a(22)-a(39) from Chai Wah Wu, Jul 24 2016
STATUS
approved