OFFSET
1,2
COMMENTS
Row sums of A165430.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009), Article 09.5.2, function P**(n).
FORMULA
a(n) = Sum_{k=1..n} A165430(n,k).
Sum_{k=1..n} a(k) = c * n^2 * log(n) / 2 + O(n^2), where c = Product_{p prime} (1 - (3*p-1)/(p^2*(p+1))) = zeta(2) * Product_{p prime} (1 - (2*p-1)^2/p^4) = A013661 * A256392 = 0.35823163000196141456... . - Amiram Eldar, Dec 22 2023
MAPLE
MATHEMATICA
phi[x_, n_] := Sum[Boole[GCD[k, n] == 1], {k, 1, x}]; uphi[1]=1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); a[n_] := DivisorSum[n, uphi[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 09 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 21 2016
STATUS
approved