login
A275258
Toth's partial sum over the number of divisors of the greatest unitary divisor.
1
1, 3, 4, 6, 6, 11, 8, 11, 11, 16, 12, 21, 14, 21, 23, 20, 18, 29, 20, 32, 30, 31, 24, 39, 27, 36, 30, 42, 30, 57, 32, 37, 45, 46, 47, 56, 38, 51, 52, 59, 42, 77, 44, 62, 63, 61, 48, 71, 51, 69, 67, 72, 54, 77, 70, 78, 74, 76, 60, 113, 62, 81, 83
OFFSET
1,2
LINKS
László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009), Article 09.5.2, function S**(n).
FORMULA
a(n) = Sum_{k=1..n} A000005( A165430(n,k) ).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n * log(n)^2), where c = A065486. - Amiram Eldar, Dec 22 2023
MAPLE
A275258 := proc(n)
local a, d ;
a := 0 ;
for d in A077610(n) do
a := a+A005361(d)*A275257(n/d, d) ;
end do:
a ;
end proc:
seq(A275258(n), n=1..80) ;
MATHEMATICA
beta[n_] := Times @@ Transpose[FactorInteger[n]][[2]]; phi[x_, n_] := Sum[Boole[ GCD[k, n] == 1 ], {k, 1, x}]; a[n_] := DivisorSum[n, beta[#] * phi[n/#, #] &, GCD[#, n/#] == 1 &]; Array[a, 100] (* Amiram Eldar, Sep 22 2019 *)
CROSSREFS
KEYWORD
nonn,look,easy
AUTHOR
R. J. Mathar, Jul 21 2016
STATUS
approved