login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185443
Engel expansion of A060997 = 1.433127...
0
1, 3, 4, 6, 6, 10, 10, 10, 21, 66, 207, 722, 6563, 25007, 372733, 2028763, 5472218, 41430101, 75142985, 192675195, 201216921, 925285050, 935598827, 2288358581, 2346034092, 26271379744, 41588896504, 152594692251, 529451874660
OFFSET
1,2
MAPLE
Digits := 5000:
a0 := evalf(BesselI(0, 2)/BesselI(1, 2)):
f1 := proc(n) local i, an, u, a:
an := [ ]:
u := n:
for i from 1 to 30 do
a := ceil(1/u):
an := [ op(an), a ]:
u := u * a - 1:
od:
RETURN (an): end: f1(a0);
PROG
(PARI) CFB(v)={ \\ converts a continued fraction to a number
my(x=v[#v]*1.);
forstep(i=#v-1, 1, -1,
x = v[i] + x^-1;
);
x
};
Engel(x)={
my(v=List(), t);
while(1,
trap(,
return(Vec(v))
,
t = ceil(1/x)
);
listput(v, t);
x = (x * t) - 1
)
};
\p 500
Engel(CFB(vector(500, i, i)))
CROSSREFS
Cf. A006784.
Sequence in context: A063649 A053158 A206924 * A275258 A230593 A304411
KEYWORD
nonn
AUTHOR
Jani Melik, Feb 04 2011
EXTENSIONS
gp script from Charles R Greathouse IV, Feb 06 2011
STATUS
approved