%I #14 May 13 2013 01:49:31
%S 1,3,4,6,6,10,10,10,21,66,207,722,6563,25007,372733,2028763,5472218,
%T 41430101,75142985,192675195,201216921,925285050,935598827,2288358581,
%U 2346034092,26271379744,41588896504,152594692251,529451874660
%N Engel expansion of A060997 = 1.433127...
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/EngelExpansion.html">Engel Expansion</a>
%p Digits := 5000:
%p a0 := evalf(BesselI(0,2)/BesselI(1,2)):
%p f1 := proc(n) local i, an, u, a:
%p an := [ ]:
%p u := n:
%p for i from 1 to 30 do
%p a := ceil(1/u):
%p an := [ op(an), a ]:
%p u := u * a - 1:
%p od:
%p RETURN (an): end: f1(a0);
%o (PARI) CFB(v)={ \\ converts a continued fraction to a number
%o my(x=v[#v]*1.);
%o forstep(i=#v-1,1,-1,
%o x = v[i] + x^-1;
%o );
%o x
%o };
%o Engel(x)={
%o my(v=List(),t);
%o while(1,
%o trap(,
%o return(Vec(v))
%o ,
%o t = ceil(1/x)
%o );
%o listput(v,t);
%o x = (x * t) - 1
%o )
%o };
%o \p 500
%o Engel(CFB(vector(500,i,i)))
%Y Cf. A006784.
%K nonn
%O 1,2
%A _Jani Melik_, Feb 04 2011
%E gp script from _Charles R Greathouse IV_, Feb 06 2011