login
A321160
Numbers that have exactly 10 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
5
220780, 519156, 1079001, 1154440, 1324576, 1447551, 2429505, 2454705, 2491776, 2603601, 2665125, 2700621, 2772225, 2953665, 3000025, 3086721, 3316600, 3665376, 4488561, 4741660, 5142501, 5388201, 5785101, 6076225
OFFSET
1,1
EXAMPLE
a(1) 220780 has representations P(n,k) = P(4, 36798) = P(7, 10515) = P(10, 4908) = P(14, 2428) = P(19, 1293) = P(28, 586) = P(35, 373) = P(38, 316) = P(40, 285) = P(664, 3).
a(2) 519156 has representations P(n,k) = P(3, 173053) = P(6, 34612) = P(8, 18543) = P(11, 9441) = P(27, 1481) = P(36, 826) = P(66, 244) = P(92, 126) = P(99, 109) = P(456, 7).
a(3) 1079001 has representations P(n,k) = P(3, 359668) = P(6, 71935) = P(9, 29974) = P(11, 19620) = P(14, 11859) = P(21, 5140) = P(27, 3076) = P(66, 505) = P(81, 335) = P(126, 139).
PROG
(Python) # See links.
(PARI) isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 10; \\ Michel Marcus, Nov 02 2018
KEYWORD
nonn
AUTHOR
Hugh Erling, Oct 29 2018
STATUS
approved