login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321156
Numbers that have exactly 5 representations as a k-gonal number, P(n,k) = n*((k-2)*n - (k-4))/2, k and n >= 3.
5
561, 1485, 1701, 2016, 2556, 2601, 2850, 3025, 3060, 3256, 3321, 4186, 4761, 4851, 5226, 5320, 5565, 5841, 6175, 6216, 6336, 6525, 6670, 7425, 7821, 7840, 8001, 8100, 8625, 8646, 9730, 9856, 9945, 9976, 10116, 10296, 10450, 10585, 11025, 11305, 11340, 12025, 12090
OFFSET
1,1
COMMENTS
n | 2*m where m is a term in this sequence. - David A. Corneth, Oct 29 2018
LINKS
Hugh Erling, Python code
EXAMPLE
561 has representations P(3, 188)=P(6, 39)=P(11, 12)=P(17, 6)=P(33, 3).
1485 has representations P(3, 496)=P(5, 150)=P(9, 43)=P(15, 16)=P(54, 3).
1701 has representations P(3, 568)=P(6, 115)=P(9, 49)=P(18, 13)=P(21, 10).
PROG
(PARI) isok(n) = sum(k=3, n-1, ispolygonal(n, k)) == 5; \\ Michel Marcus, Oct 29 2018
(PARI) is(n) = my(d=divisors(n<<1)); sum(i=2, #d, k=2*(d[i]^2 - 2 * d[i] + n) / (d[i] - 1) / d[i]; k == k\1 && min(d[i], k) >=3) == 5 \\ David A. Corneth, Oct 29 2018
KEYWORD
nonn
AUTHOR
Hugh Erling, Oct 28 2018
STATUS
approved