login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218458
a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.
1
-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
OFFSET
0,1
COMMENTS
A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.
FORMULA
G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021
MATHEMATICA
Table[2n^3-163n^2+2777n-11927, {n, 0, 99}]
LinearRecurrence[{4, -6, 4, -1}, {-11927, -9311, -7009, -5009}, 40] (* Harvey P. Dale, Jan 31 2017 *)
PROG
(Maxima) A218458(n):=2*n^3-163*n^2+2777*n-11927$
makelist(A218458(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
(Magma) [2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Pedja Terzic, Oct 29 2012
STATUS
approved