login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218456
2*n^3 - 313*n^2 + 6823*n - 13633.
3
-13633, -7121, -1223, 4073, 8779, 12907, 16469, 19477, 21943, 23879, 25297, 26209, 26627, 26563, 26029, 25037, 23599, 21727, 19433, 16729, 13627, 10139, 6277, 2053, -2521, -7433, -12671, -18223, -24077, -30221, -36643, -43331, -50273, -57457
OFFSET
0,1
COMMENTS
A prime-producing cubic polynomial. Produces 79 distinct primes if we scan the absolute values of the first 100 terms..
FORMULA
G.f.: (20771*x^3-54537*x^2+47411*x-13633)/(x-1)^4. [Colin Barker, Nov 10 2012]
MATHEMATICA
Table[2n^3-313n^2+6823n-13633, {n, 0, 99}]
LinearRecurrence[{4, -6, 4, -1}, {-13633, -7121, -1223, 4073}, 40] (* Harvey P. Dale, May 03 2018 *)
PROG
(Maxima) A218456(n):=2*n^3-313*n^2+6823*n-13633$
makelist(A218456(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
CROSSREFS
Sequence in context: A232447 A237893 A206091 * A224971 A185471 A203727
KEYWORD
sign,easy
AUTHOR
Pedja Terzic, Oct 29 2012
STATUS
approved