login
A320801
Regular triangle read by rows where T(n,k) is the number of nonnegative integer matrices up to row and column permutations with no zero rows or columns and k nonzero entries summing to n.
7
1, 0, 1, 0, 1, 3, 0, 1, 3, 6, 0, 1, 6, 10, 16, 0, 1, 6, 20, 30, 34, 0, 1, 9, 31, 75, 92, 90, 0, 1, 9, 45, 126, 246, 272, 211, 0, 1, 12, 60, 223, 501, 839, 823, 558, 0, 1, 12, 81, 324, 953, 1900, 2762, 2482, 1430, 0, 1, 15, 100, 491, 1611, 4033, 7120, 9299, 7629, 3908
OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
EXAMPLE
Triangle begins:
1
0 1
0 1 3
0 1 3 6
0 1 6 10 16
0 1 6 20 30 34
0 1 9 31 75 92 90
0 1 9 45 126 246 272 211
0 1 12 60 223 501 839 823 558
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={prod(j=1, #q, my(g=gcd(t, q[j]), e=(q[j]/g)); (1 - y^e + y^e/(1 - x^e) + O(x*x^k))^g) - 1}
G(n)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, substvec(K(q, t, n\t)/t, [x, y], [x^t, y^t])) + O(x*x^n))); s/n!}
T(n)=[Vecrev(p) | p<-Vec(G(n))]
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024
CROSSREFS
Row sums are A007716. Last column is A049311.
Sequence in context: A091867 A127158 A112367 * A035623 A350178 A248949
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 09 2018
EXTENSIONS
Offset corrected by Andrew Howroyd, Jan 16 2024
STATUS
approved