login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320803
Number of non-isomorphic multiset partitions of weight n in which all parts are aperiodic multisets.
5
1, 1, 3, 7, 21, 56, 174, 517, 1664, 5383, 18199, 62745, 223390, 813425, 3040181, 11620969, 45446484, 181537904, 740369798, 3079779662, 13059203150, 56406416004, 248027678362, 1109626606188, 5048119061134, 23342088591797, 109648937760252, 523036690273237
OFFSET
0,3
COMMENTS
A multiset is aperiodic if its multiplicities are relatively prime.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions with aperiodic parts:
{{1}} {{1,2}} {{1,2,2}} {{1,2,2,2}}
{{1},{1}} {{1,2,3}} {{1,2,3,3}}
{{1},{2}} {{1},{2,3}} {{1,2,3,4}}
{{2},{1,2}} {{1},{1,2,2}}
{{1},{1},{1}} {{1,2},{1,2}}
{{1},{2},{2}} {{1},{2,3,3}}
{{1},{2},{3}} {{1},{2,3,4}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={if(n==0, 1, my(mbt=vector(n, d, moebius(d)), s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(dirmul(mbt, sum(t=1, n, K(q, t, n)/t)))), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 06 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
STATUS
approved