login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320749
Number of chiral pairs of color patterns (set partitions) in a cycle of length n.
4
0, 0, 0, 0, 0, 6, 34, 190, 1011, 5352, 29740, 172466, 1055232, 6793791, 46034940, 327303819, 2436650368, 18944771253, 153488081102, 1293086505784, 11306373089104, 102425178180769, 959825673145688, 9290807818971900, 92771800581171418, 954447025978145744, 10105871186441842623, 110009631951698573068, 1229996584263621368224, 14112483571723367245825, 166021918475962174194914, 2001010469483653602192695
OFFSET
1,6
COMMENTS
Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
FORMULA
a(n) = Sum_{j=1..n} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = (A084423(n) - A080107(n)) / 2 = A084423(n) - A084708(n) = A084708(n) - A080107(n).
EXAMPLE
For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
MATHEMATICA
Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#]&], Boole[n==0 && k==0]]
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#, n/#, j]&]/n - Ach[n, j])/2, {j, n}], {n, 40}]
CROSSREFS
Row sums of A320647.
Columns of A320742 converge to this as k increases.
Cf. A084423 (oriented), A084708 (unoriented), A080107 (achiral).
Sequence in context: A125343 A163350 A320746 * A052264 A049608 A244937
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 22 2018
STATUS
approved