login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319777
a(n) is the number of equivalence classes of triples of sets each with n or fewer elements where two triples are equivalent if the number of elements in all intersections is the same.
1
1, 15, 100, 436, 1459, 4069, 9929, 21871, 44426, 84494, 152171, 261749, 432906, 692102, 1074198, 1624314, 2399943, 3473337, 4934182, 6892578, 9482341, 12864643, 17232007, 22812673, 29875352, 38734384, 49755317, 63360923, 80037668, 100342652, 124911036
OFFSET
0,2
COMMENTS
A019298(n) is the analogous sequence if the three sets must each have exactly n elements.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A244865(k). [corrected by Michel Marcus, Dec 27 2018]
From Colin Barker, Dec 27 2018: (Start)
G.f.: (1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)).
a(n) = 7*a(n-1) - 20*a(n-2) + 28*a(n-3) - 14*a(n-4) - 14*a(n-5) + 28*a(n-6) - 20*a(n-7) + 7*a(n-8) - a(n-9) for n>8.
(End)
EXAMPLE
The triple (A, B, C) = ({1, 2}, {1, 2, 3}, {1, 4}) is equivalent to the triple (A', B', C') = ({1, 8}, {1, 4, 8}, {5, 8}) because all intersections of the sets in a triple are equal:
|A| = |{1, 2}| = 2 = |{1, 8}| = |A'|
|B| = |{1, 2, 3}| = 3 = |{1, 4, 8}| = |B'|
|C| = |{1, 4}| = 2 = |{5, 8}| = |C'|
|A & B| = |{1, 2}| = 2 = |{1, 8}| = |A' & B'|
|A & C| = |{1}| = 1 = |{8}| = |A' & C'|
|B & C| = |{1}| = 1 = |{8}| = |B' & C'|
|A & B & C| = |{1}| = 1 = |{8}| = |A' & B' & C'|
MAPLE
a:=n->add((15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920, k=0..n): seq(a(n), n=0..30); # Muniru A Asiru, Sep 28 2018
PROG
(GAP) List([0..30], n->Sum([0..n], k->(15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920)); # Muniru A Asiru, Sep 28 2018
(PARI) a(n) = sum(k=0, n, (15*(127+(-1)^k) + 6432*k + 8936*k^2 + 6480*k^3 + 2570*k^4 + 528*k^5 + 44*k^6) / 1920); \\ Michel Marcus, Dec 27 2018
(PARI) Vec((1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Dec 28 2018
CROSSREFS
Cf. A000330(n-1) is analogous, but with pairs instead of triples.
Sequence in context: A000973 A034266 A087661 * A242657 A163717 A111370
KEYWORD
nonn
AUTHOR
Peter Kagey, Sep 26 2018
STATUS
approved