OFFSET
0,2
COMMENTS
A019298(n) is the analogous sequence if the three sets must each have exactly n elements.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (7,-20,28,-14,-14,28,-20,7,-1).
FORMULA
a(n) = Sum_{k=0..n} A244865(k). [corrected by Michel Marcus, Dec 27 2018]
From Colin Barker, Dec 27 2018: (Start)
G.f.: (1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)).
a(n) = 7*a(n-1) - 20*a(n-2) + 28*a(n-3) - 14*a(n-4) - 14*a(n-5) + 28*a(n-6) - 20*a(n-7) + 7*a(n-8) - a(n-9) for n>8.
(End)
EXAMPLE
The triple (A, B, C) = ({1, 2}, {1, 2, 3}, {1, 4}) is equivalent to the triple (A', B', C') = ({1, 8}, {1, 4, 8}, {5, 8}) because all intersections of the sets in a triple are equal:
|A| = |{1, 2}| = 2 = |{1, 8}| = |A'|
|B| = |{1, 2, 3}| = 3 = |{1, 4, 8}| = |B'|
|C| = |{1, 4}| = 2 = |{5, 8}| = |C'|
|A & B| = |{1, 2}| = 2 = |{1, 8}| = |A' & B'|
|A & C| = |{1}| = 1 = |{8}| = |A' & C'|
|B & C| = |{1}| = 1 = |{8}| = |B' & C'|
|A & B & C| = |{1}| = 1 = |{8}| = |A' & B' & C'|
MAPLE
a:=n->add((15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920, k=0..n): seq(a(n), n=0..30); # Muniru A Asiru, Sep 28 2018
PROG
(GAP) List([0..30], n->Sum([0..n], k->(15*(127+(-1)^k)+6432*k+8936*k^2+6480*k^3+2570*k^4+528*k^5+44*k^6)/1920)); # Muniru A Asiru, Sep 28 2018
(PARI) a(n) = sum(k=0, n, (15*(127+(-1)^k) + 6432*k + 8936*k^2 + 6480*k^3 + 2570*k^4 + 528*k^5 + 44*k^6) / 1920); \\ Michel Marcus, Dec 27 2018
(PARI) Vec((1 + 8*x + 15*x^2 + 8*x^3 + x^4) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Dec 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Sep 26 2018
STATUS
approved