login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319780
a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.
0
2, 2, 1, 0, 2, 1, 0, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 2, 1
OFFSET
1,1
COMMENTS
The length of the sequence is equal to 3^3^3 = 7625597484987.
EXAMPLE
1D cellular automaton with rule=1 gives the following generations:
1 ..........1.......... <------ start
2 111111111...111111111 <------ end
3 ..........1..........
4 111111111...111111111
5 ..........1..........
6 111111111...111111111
7 ..........1..........
The period is 2, thus a(1) = 2.
For rule=150:
1 ..........1..... <------ start
2 .........22..... <------ end
3 ........1.......
4 .......22.......
5 ......1.........
6 .....22.........
7 ....1...........
The period is 2, thus a(150) = 2.
For rule=100000000797:
1 .........1....... <------ start
2 ........2.2......
3 ........111......
4 .......2.112.....
5 .......12........
6 ......21.........
7 ........2........ <------ end
8 ........1........
9 .......2.2.......
10 .......111.......
11 ......2.112......
12 ......12.........
13 .....21..........
14 .......2.........
15 .......1.........
The period is 7, thus a(100000000797) = 7.
a(10032729) = 12.
a(10096524) = 16.
MATHEMATICA
Table[
Length[
Last[
FindTransientRepeat[(Internal`DeleteTrailingZeros[
Reverse[Internal`DeleteTrailingZeros[#]]]) & /@
CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]],
{i, 1, 1000}
]
CROSSREFS
Cf. A180001.
Sequence in context: A287150 A257109 A096830 * A141647 A366386 A358729
KEYWORD
nonn,fini
AUTHOR
Philipp O. Tsvetkov, Sep 27 2018
STATUS
approved